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Abstract. An integer k is called regular (mod n) if there exists an integer x such that k2x ≡ k (mod n). This
holds true if and only if k possesses a weak order (mod n), i.e., there is an integer m ≥ 1 such that km+1

≡ k
(mod n). Let %(n) denote the number of regular integers (mod n) in the set {1, 2, . . . ,n}. This is an analogue
of Euler’s φ function. We introduce the multidimensional generalization of %, which is the analogue of
Jordan’s function. We establish identities for the power sums of regular integers (mod n) and for some other
finite sums and products over regular integers (mod n), involving the Bernoulli polynomials, the Gamma
function and the cyclotomic polynomials, among others. We also deduce an analogue of Menon’s identity
and investigate the maximal orders of certain related functions.

1. Introduction

Throughout the paper we use the notations: N := {1, 2, . . .}, N0 := {0, 1, 2, . . .}, Z is the set of integers,
bxc is the integer part of x, 1 is the function given by 1(n) = 1 (n ∈ N), id is the function given by id(n) = n
(n ∈N),φ is Euler’s totient function, τ(n) is the number of divisors of n, µ is the Möbius function,ω(n) stands
for the number of prime factors of n, Λ is the von Mangoldt function, κ(n) :=

∏
p |n p is the largest squarefree

divisor of n, cn(t) are the Ramanujan sums defined by cn(t) :=
∑

1≤k≤n,gcd(k,n)=1 exp(2πikt/n) (n ∈ N, t ∈ Z), ζ
is the Riemann zeta function. Other notations will be fixed inside the paper.

Let n ∈ N and k ∈ Z. Then k is called regular (mod n) if there exists x ∈ Z such that k2x ≡ k (mod
n). This holds true if and only if k possesses a weak order (mod n), i.e., there is m ∈ N such that km+1

≡ k
(mod n). Every k ∈ Z is regular (mod 1). If n > 1 and its prime power factorization is n = pν1

1 · · · p
νr
r , then

k is regular (mod n) if and only if for every i ∈ {1, . . . , r} either pi - k or pνi
i | k. Also, k is regular (mod n) if

and only if gcd(k,n) is a unitary divisor of n. We recall that d is said to be a unitary divisor of n if d |n and
gcd(d,n/d) = 1, notation d ||n. Note that if n is squarefree, then every k ∈ Z is regular (mod n). See the
papers [1, 14, 15, 20] for further discussion and properties of regular integers (mod n), and their connection
with the notion of regular elements of a ring in the sense of J. von Neumann.

An integer k is regular (mod n) if and only if k + n is regular (mod n). Therefore, it is justified to consider
the set

Regn := {k ∈N : 1 ≤ k ≤ n, k is regular (mod n)}
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L. Tóth gratefully acknowledges support from the Austrian Science Fund (FWF) under the project Nr. M1376-N18.
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and the quantity %(n) := # Regn. For example, Reg12 = {1, 3, 4, 5, 7, 8, 9, 11, 12} and %(12) = 9. If n is squarefree,
then Regn = {1, 2, . . . ,n} and %(n) = n. Note that 1,n ∈ Regn for every n ∈ N. The arithmetic function % is
an analogue of Euler’s φ function, it is multiplicative and %(pν) = φ(pν) + 1 = pν − pν−1 + 1 for every prime
power pν (ν ∈N). Consequently,

%(n) =
∑
d ||n

φ(d) (n ∈N). (1)

See, e.g., [13] for general properties of unitary divisors, in particular the unitary convolution of the
arithmetic functions f and 1 defined by ( f ×1)(n) =

∑
d ||n f (d)1(n/d). Here f ×1 preserves the multiplicativity

of the functions f and 1. We refer to [20] for asymptotic properties of the function %.
The function

cn(t) :=
∑

k∈Regn

exp(2πikt/n) (n ∈N, t ∈ Z),

representing an analogue of the Ramanujan sum cn(t) was investigated in the paper [8]. We have

cn(t) =
∑
d ||n

cd(t) (n ∈N, t ∈ Z).

It turns out that for every fixed t the function n 7→ cn(t) is multiplicative, cn(0) = %(n) and cn(1) = µ(n) is
the characteristic function of the squarefull integers n.

The gcd-sum function is defined by P(n) :=
∑n

k=1 gcd(k,n) =
∑

d |n dφ(n/d), see [22]. The following
analogue of the gcd-sum function was introduced in the paper [21]:

P̃(n) :=
∑

k∈Regn

gcd(k,n).

One has

P̃(n) =
∑
d ||n

dφ(n/d) = n
∏
p |n

(
2 −

1
p

)
(n ∈N),

the asymptotic properties of P̃(n) being investigated in [10, 22, 26, 27].
In the present paper we discuss some further properties of the regular integers (mod n). We first

introduce the multidimensional generalization %r (r ∈ N) of the function %, which is the analogue of the
Jordan function φr, where φr(n) is defined as the number of ordered r-tuples (k1, . . . , kr) ∈ {1, . . . ,n}r such
that gcd(k1, . . . , kr) is prime to n (see, e.g., [13, 18]). Then we consider the sum S[reg]r(n) of r-th powers
of the regular integers (mod n) belonging to Regn. In the case r ∈ N we deduce an exact formula for
S[reg]r(n) involving the Bernoulli numbers Bm. For a positive real number r we derive an asymptotic
formula for S[reg]r(n). We combine the functions cn(t) and P̃(n) defined above and establish identities
for sums, respectively products over the integers in Regn concerning the Bernoulli polynomials Bm(x), the
Gamma function Γ, the cyclotomic polynomials Φm(x) and certain trigonometric functions. We point out
that for n squarefree these identities reduce to the corresponding ones over {1, 2, . . . ,n}. We also deduce an
analogue of Menon’s identity and investigate the maximal orders of some related functions.

2. A Generalization of the Function %

For r ∈ N let %r(n) be the number of ordered r-tuples (k1, . . . , kr) ∈ {1, . . . ,n}r such that gcd(k1, . . . , kr) is
regular (mod n). If r = 1, then %1 = %. The arithmetic function %r is the analogue of the Jordan function φr,
defined in the Introduction and verifying φr(n) = nr ∏

p |n(1 − 1/pr) (n ∈N).
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Proposition 2.1. i) For every r,n ∈N,

%r(n) =
∑
d ||n

φr(d).

ii) The function %r is multiplicative and for every prime power pν (ν ∈N),

%r(pν) = prν
− pr(ν−1) + 1.

Proof. i) The integer gcd(k1, . . . , kr) is regular (mod n) if and only if gcd(gcd(k1, . . . , kr),n) ||n, that is gcd(k1, . . . , kr,n) ||n
and grouping the r-tuples (k1, . . . , kr) according to the values gcd(k1, . . . , kr,n) = d we deduce that

%r(n) =
∑

(k1,...,kr)∈{1,...,n}r
gcd(k1,...,kr) regular (mod n)

1 =
∑
d ||n

∑
(k1,...,kr)∈{1,...,n}r
gcd(k1,...,kr,n)=d

1

=
∑
d ||n

∑
(`1,...,`r)∈{1,...,n/d}r
gcd(`1,...,`r,n/d)=1

1,

where the inner sum is φr(n/d), according to its definition.
ii) Follows at once by i).

More generally, for a fixed real number s let φs(n) =
∑

d |n dsµ(n/d) be the generalized Jordan function
and define %s by

%s(n) =
∑
d ||n

φs(d) (n ∈N). (2)

The functions φs and %s (which will be used in the next results of the paper) are multiplicative and
for every prime power pν (ν ∈ N) one has φs(pν) = psν

− ps(ν−1) and %s(pν) = psν
− ps(ν−1) + 1. Note that

φ−s(n) = n−s ∏
pν ||n

(
1 − ps) and %−s(n) = n−s ∏

pν ||n
(
psν
− ps + 1

)
.

Proposition 2.2. If s > 1 is a real number, then∑
n≤x

%s(n) =
xs+1

s + 1

∏
p

(
1 −

1
ps+1 +

p − 1
p(ps+1 − 1)

)
+ O(xs). (3)

Proof. We need the following asymptotics. Let s > 0 be fixed real number. Then uniformly for real x > 1
and t ∈N,

φs(x, t) :=
∑
n≤x

gcd(n,t)=1

φs(n) =
xs+1

(s + 1)ζ(s + 1)
·

tsφ(t)
φs+1(t)

+ O(xs2ω(t)). (4)

To show (4) use the known estimate, valid for every fixed s > 0 and t ∈N,∑
n≤x

gcd(n,t)=1

ns =
xs+1

s + 1
·
φ(t)

t
+ O

(
xs2ω(t)

)
. (5)

We obtain

φs(x, t) =
∑

de=n≤x
gcd(n,t)=1

µ(d)es =
∑
d≤x

gcd(d,t)=1

µ(d)
∑

e≤x/d
gcd(e,t)=1

es
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=
∑
d≤x

gcd(d,t)=1

µ(d)
(

(x/d)s+1

s + 1
·
φ(t)

t
+ O

(
(x/d)s2ω(t)

))

=
xs+1

s + 1
·
φ(t)

t

∞∑
d=1

gcd(d,t)=1

µ(d)
ds+1 + O

xs+1
∑
d>x

1
ds+1

 + O
(
xs2ω(t)

)
,

giving (4). Now from (2) and (4),∑
n≤x

%s(n) =
∑

de=n≤x
gcd(d,e)=1

φs(e) =
∑
d≤x

∑
e≤x/d

gcd(e,d)=1

φs(e) =
∑
d≤x

φs(x/d, d)

=
xs+1

(s + 1)ζ(s + 1)

∞∑
d=1

φ(d)
dφs+1(d)

+ O

xs+1
∑
d>x

φ(d)
dφs+1(d)

 + O

xs
∑
d≤x

2ω(d)

ds

 ,
and for s > 1 this leads to (3).

Compare (3) to the corresponding formula for the Jordan function φs, i.e., to (4) with t = 1.

Remark 2.3. For the function % one has∑
n≤x

%(n) =
1
2

∏
p

(
1 −

1
p2(p + 1)

)
x2 + R(x),

where R(x) = O(x log3 x) can be obtained by the elementary arguments given above. This can be improved
into R(x) = O(x log x) using analytic methods. See [20] for references.

3. A General Scheme

In order to give exact formulas for certain sums and products over the regular integers (mod n) we
first present a simple result for a general sum over Regn, involving a weight function w and an arithmetic
function f . It would be possible to consider a more general sum, namely over the ordered r-tuples
(k1, . . . , kr) ∈ {1, . . . ,n}r such that gcd(k1, . . . , kr) is regular (mod n), but we confine ourselves to the following
result. See [24] for another similar scheme concerning weighted gcd-sum functions.

Proposition 3.1. i) Let w :N2
→ C and f :N→ C be arbitrary functions and consider the sum

Rw, f (n) :=
∑

k∈Regn

w(k,n) f (gcd(k,n)).

Then

Rw, f (n) =
∑
d ||n

f (d)
n/d∑
j=1

gcd( j,n/d)=1

w(dj,n) (n ∈N). (6)

ii) Assume that there is a function 1 : (0, 1]→ C such that w(k,n) = 1(k/n) (1 ≤ k ≤ n) and let

G(n) =

n∑
k=1

gcd(k,n)=1

1(k/n) (n ∈N).

Then

Rw, f (n) =
∑
d ||n

f (d)G(n/d) (n ∈N). (7)
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Proof. i) Using that k is regular (mod n) if and only if gcd(k,n) ||n and grouping the terms according to the
values of gcd(k,n) = d and denoting k = dj we have at once

Rw, f (n) =
∑
d ||n

f (d)
n∑

k=1
gcd(k,n)=d

w(k,n) =
∑
d ||n

f (d)
n/d∑
j=1

gcd( j,n/d)=1

w(dj,n).

ii) Now

n/d∑
j=1

w(dj,n) =

n/d∑
j=1

1( j/(n/d)) = G(n/d).

Remark 3.2. For the function 1 given above let

G(n) :=
n∑

k=1

1(k/n).

Then we have

G(n) =
∑
d |n

µ(d)G(n/d) (n ∈N). (8)

Indeed, as it is well known, G(n) =
∑n

k=1 1(k/n)
∑

d|gcd(k,n) µ(d), giving (8).

4. Power Sums of Regular Integers (mod n)

In this section we investigate the sum of r-th powers (r ∈ N) of the regular integers (mod n). Let Bm
(m ∈N0) be the Bernoulli numbers defined by the exponential generating function

t
et − 1

=

∞∑
m=0

Bm
tm

m!
.

Here B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, Bm = 0 for every m ≥ 3, m odd and one has the recurrence
relation

Bm =

m∑
j=0

(
m
j

)
B j (m ≥ 2). (9)

It is well known that for every n, r ∈N,

Sr(n) :=
n∑

k=1

kr =
1

r + 1

r∑
m=0

(−1)m
(
r + 1

m

)
Bmnr+1−m

=
nr

2
+

1
r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2mnr+1−2m. (10)

From here one obtains, using the same device as that given in Remark 3.2 that for every n, r ∈ N with
n ≥ 2,

S[relpr]r(n) :=
n∑

k=1
gcd(k,n)=1

kr =
nr

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2mφ1−2m(n), (11)
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where φ1−2m(n) = n1−2m ∏
p |n

(
1 − p2m−1

)
. Formula (11) was given in [19]. Here we prove the following

result.

Proposition 4.1. For every n, r ∈N,

S[reg]r(n) :=
∑

k∈Regn

kr =
nr

2
+

nr

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2m %1−2m(n), (12)

where

%1−2m(n) = n1−2m
∏
pν ||n

(
p(2m−1)ν

− p2m−1 + 1
)

is the generalized % function, discussed in Section 2.

Proof. Applying (6) for w(k,n) = kr and f = 1 we have

S[reg]r(n) =
∑
d ||n

n/d∑
j=1

gcd( j,n/d)=1

(dj)r =
∑
d ||n

dr S[relpr]r(n/d).

Now by (11) we deduce

S[reg]r(n) = nr +
∑
d ||n
d<n

dr

 (n/d)r

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2mφ1−2m(n/d)


= nr +

nr

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2m

∑
d ||n
d<n

φ1−2m(n/d)

= nr +
nr

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2m

∑
d ||n
d>1

φ1−2m(d)

= nr
−

nr

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2m +

nr

r + 1

br/2c∑
m=0

(
r + 1
2m

)
B2m

∑
d ||n

φ1−2m(d).

Here
∑

d ||n φ1−2m(n) = %1−2m(d) by (2). Also, by (9),

br/2c∑
m=0

(
r + 1
2m

)
B2m =

r + 1
2

and this completes the proof.

For example, in the cases r = 1, 2, 3, 4 we deduce that for every n ∈N,

S[reg]1(n) =
n(%(n) + 1)

2
, (13)

S[reg]2(n) =
n2

2
+

n2%(n)
3

+
n
6

∏
pν ||n

(
pν − p + 1

)
, (14)
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S[reg]3(n) =
n3

2
+

n3%(n)
4

+
n2

4

∏
pν ||n

(
pν − p + 1

)
,

S[reg]4(n) =
n4

2
+

n4%(n)
5

+
n3

3

∏
pν ||n

(
pν − p + 1

)
−

n
30

∏
pν ||n

(
p3ν
− p3 + 1

)
.

The formula (13) was obtained in [20, Th. 3] and [3, Sec. 2], while (14) was given in a different form in
[3, Prop. 1]. Note that if n is squarefree, then (12) reduces to (10).

For a real number s consider now the slightly more general sum

S[reg]s(n, x) :=
∑
k≤x

k regular (mod n)

ks.

Proposition 4.2. Let s ≥ 0 be a fixed real number. Then uniformly for real x > 1 and n ∈N,

S[reg]s(n, x) =
xs+1

s + 1
·
%(n)

n
+ O

(
xs3ω(n)

)
.

Proof. Similar to the proof of Proposition 3.1,

S[reg]s(n, x) =
∑
k≤x

gcd(k,n) ||n

ks =
∑
d ||n

ds
∑
j≤x/d

gcd( j,n/d)=1

js.

Now using the estimate (5) we deduce

S[reg]s(n, x) =
∑
d ||n

ds
(

(x/d)s+1φ(n/d)
(s + 1)(n/d)

+ O
(
(x/d)s2ω(n/d)

))

=
xs+1

(s + 1)n

∑
d ||n

φ(n/d) + O

xs
∑
d ||n

2ω(n/d)

 ,
and using (1) the proof is complete.

5. Identities for other Sums and Products Over Regular Integers (mod n)

5.1. Sums Involving Bernoulli Polynomials
Let Bm(x) (m ∈N0) be the Bernoulli polynomials defined by

text

et − 1
=

∞∑
m=0

Bm(x)
tm

m!
.

Here B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2
− x + 1/6, B3(x) = x3

− 3x2/2 + x/2, Bm(0) = Bm (m ∈N0) are the
Bernoulli numbers already defined in Section 4 and one has the recurrence relation

Bm(x) =

m∑
j=0

(
m
j

)
B jxm− j (m ∈N0).

It is well known (see, e.g., [5, Sect. 9.1]) that for every n,m ∈N, m ≥ 2,

Tm(n) :=
n∑

k=1

Bm(k/n) =
Bm

nm−1 . (15)
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Furthermore, applying (8) one obtains from (15) that for every n,m ∈N, m ≥ 2,

T[relpr]m(n) :=
n∑

k=1
gcd(k,n)=1

Bm(k/n) = Bmφ1−m(n), (16)

whereφ1−m(n) = n1−m ∏
p |n

(
1 − pm−1

)
. See [5, Sect. 9.9, Ex. 7]. We now show the validity of the next formula:

Proposition 5.1.1 For every n,m ∈N, m ≥ 2,

T[reg]m(n) :=
∑

k∈Regn

Bm(k/n) = Bm%1−m(n), (17)

where %1−m(n) = n1−m ∏
pν ||n

(
p(m−1)ν

− pm−1 + 1
)
.

Proof. Choosing 1(x) = Bm(x) and f = 1 we deduce from (7) by using (16) that

T[reg]m(n) =
∑
d ||n

T[relpr]m(d)

= Bm

∑
d ||n

φ1−m(d) = Bm%1−m(n),

according to (2).

Remark 5.1.2 In the case m = 1 a direct computation and (13) show that T[reg]1(n) = 1/2. Also, (17) can be
put in the form

n−1∑
k=0

k regular (mod n)

Bm(k/n) = Bm%1−m(n),

which holds true for every n,m ∈N, also for m = 1.

5.2. Sums Involving gcd’s and the exp Function
Consider in what follows the function

P[reg] f ,t(n) :=
∑

k∈Regn

f (gcd(k,n)) exp(2πikt/n) (n ∈N, t ∈ Z),

where f is an arbitrary arithmetic function. For t = 0 and f (n) = n (n ∈ N) we reobtain the function P̃(n)
and for f = 1 we have cn(t), the analogue of the Ramanujan sums, both given in the Introduction. We have

Proposition 5.2.1 For every f and every n ∈N and t ∈ Z,

P[reg] f ,t(n) =
∑
d ||n

f (d)cn/d(t).

If f is integer valued and multiplicative (in particular, if f = id), then n 7→ P[reg] f ,t(n) also has these properties.

Proof. Choosing 1(x) = exp(2πitx) from (7) we deduce at once that

P[reg] f ,t(n) =
∑
d ||n

f (d)
n/d∑
j=1

gcd( j,n/d)=1

exp(2πi jt/(n/d)) =
∑
d ||n

f (d)cn/d(t).
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For t = 1 and f = id this gives the multiplicative function

P[reg]id,1(n) =
∑
d ||n

dµ(n/d),

not investigated in the literature, as far as we know. Here P[reg]id,1(pν) = p − 1 for every prime p and
P[reg]id,1(pν) = pν for every prime power pν with ν ≥ 2.

Proposition 5.2.2 We have∑
n≤x

P[reg]id,1(n) =
x2

2

∏
p

(
1 −

1
p2 +

1
p3

)
+ O(x log2 x).

Proof. Using (5) for s = 1 we deduce∑
n≤x

P[reg]id,1(n) =
∑
d≤x

µ(d)
∑
δ≤x/d

gcd(δ,d)=1

δ

=
∑
d≤x

µ(d)
(
φ(d)(x/d)2

2d
+ O((x/d)2ω(d))

)

=
x2

2

∞∑
d=1

µ(d)φ(d)
d3 + O

x2
∑
d>x

1
d2

 + O

x
∑
d≤x

2ω(d)

d

 ,
giving the result.

5.3. An Analogue of Menon’s Identity
Our next result is the analogue of Menon’s identity ([12], see also [23])

n∑
k=1

gcd(k,n)=1

gcd(k − 1,n) = φ(n)τ(n) (n ∈N). (18)

Proposition 5.3.1 For every n ∈N,∑
k∈Regn

gcd(k − 1,n) =
∑
d ||n

φ(d)τ(d) =
∏
pν ||n

(
pν−1(p − 1)(ν + 1) + 1

)
.

Proof. Applying (6) for w(k,n) = gcd(k − 1,n) and f = 1 we deduce

Sn :=
∑

k∈Regn

gcd(k − 1,n) =
∑
d ||n

n/d∑
j=1

gcd( j,n/d)=1

gcd(dj − 1,n)

=
∑
d ||n

n/d∑
j=1

gcd( j,n/d)=1

gcd(dj − 1,n/d),

since gcd(dj − 1, d) = 1 for every d and j. Now we use the identity

n∑
k=1

gcd(k,n)=1

gcd(ak − 1,n) = φ(n)τ(n) (n ∈N),
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valid for every fixed a ∈Nwith gcd(a,n) = 1, see [23, Cor. 14] (for a = 1 this reduces to (18)). Choose a = d.
Since d ||n we have gcd(d,n/d) = 1 and obtain

Sn =
∑
d ||n

φ(n/d)τ(n/d) =
∑
d ||n

φ(d)τ(d).

5.4. Trigonometric Sums
Further identities for sums over Regn can be derived. As examples, consider the following known

trigonometric identities. For every n ∈N, n ≥ 2,

n∑
k=1

cos2

(
kπ
n

)
=

n
2

;

furthermore, for every n ∈N odd number,

n∑
k=1

tan2

(
kπ
n

)
= n2

− n;

and also for every n ∈N odd,

n∑
k=1

tan4

(
kπ
n

)
=

1
3

(n4
− 4n2 + 3n).

See, for example, [4] for a discussion and proofs of these identities. See [16, Appendix 3] for other similar
identities. By the approach given in Remark 3.2 we deduce that for every n ∈N,

n∑
k=1

gcd(k,n)=1

cos2

(
kπ
n

)
=
φ(n) + µ(n)

2
;

for every n ∈N odd number,

n∑
k=1

gcd(k,n)=1

tan2

(
kπ
n

)
= φ2(n) − φ(n);

and for every n ∈N odd,

n∑
k=1

gcd(k,n)=1

tan4

(
kπ
n

)
=

1
3

(φ4(n) − 4φ2(n) + 3φ(n)).

This gives the next results. The proof is similar to the proofs given above.

Proposition 5.4.1 For every n ∈N,∑
k∈Regn

cos2

(
kπ
n

)
=
%(n) + µ(n)

2
,

where µ(n) =
∑

d ||n µ(d) is the characteristic function of the squarefull integers n, given in the Introduction.
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Proposition 5.4.2 For every n ∈N odd number,∑
k∈Regn

tan2

(
kπ
n

)
= %2(n) − %(n),

∑
k∈Regn

tan4

(
kπ
n

)
=

1
3

(%4(n) − 4%2(n) + 3%(n)).

5.5. The product of numbers in Regn

It is known (see, e.g., [16, p. 197, Ex. 24]) that for every n ∈N,

Q[relpr](n) :=
n∏

k=1
gcd(k,n)=1

k = nφ(n)A(n), (19)

where

A(n) =
∏
d |n

(d!/dd)µ(n/d).

We show that

Proposition 5.5.1 For every n ∈N,

Q[reg](n) :=
∏

k∈Regn

k = n%(n)
∏
d ||n

A(d).

Proof. Choosing w(k,n) = log k and f = 1 in Proposition 3.1 we have

log Q[reg](n) =
∑

k∈Regn

log k =
∑
d ||n

n/d∑
j=1

gcd( j,n/d)=1

log(dj)

=
∑
d ||n

(
φ(n/d) log d + log Q[relpr](n/d)

)
=

∑
d ||n

(
φ(d) log(n/d) + log Q[relpr](d)

)
= (log n)

∑
d ||n

φ(d) −
∑
d ||n

φ(d) log d +
∑
d ||n

log Q[relpr](d).

Hence,

Q[reg](n) = n%(n)
∏
d ||n

Q[relpr](d)
dφ(d)

.

Now the result follows from the identity (19).
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5.6. Products Involving the Gamma Function
Let Γ be the Gamma function defined for x > 0 by

Γ(x) =

∫
∞

0
e−ttx−1 dt.

It is well known that for every n ∈N,

R(n) :=
n∏

k=1

Γ(k/n) =
(2π)(n−1)/2

√
n

, (20)

which is a consequence of Gauss’ multiplication formula. For the q-analogs of the Gamma and Beta
functions and the multiplication formula see the recent papers [6, 7] published in this journal. Furthermore,
for every n ∈N, n ≥ 2,

R[relpr](n) :=
n∏

k=1
gcd(k,n)=1

Γ(k/n) =
(2π)φ(n)/2

exp(Λ(n)/2)
, (21)

see [11, 17].

Proposition 5.6.1 For every n ∈N,

R[reg](n) :=
∏

k∈Regn

Γ(k/n) =
(2π)(%(n)−1)/2√

κ(n)
. (22)

Proof. Choosing 1 = log Γ and f = 1 in (7) and using (21) we deduce

log R[reg](n) =
∑

k∈Regn

log Γ(k/n) =
∑
d ||n

log R[relpr](d)

=
∑
d ||n
d>1

(
log 2π

2
φ(d) −

1
2

Λ(d)
)

=
∑
d ||n

(
log 2π

2
φ(d) −

1
2

Λ(d)
)
−

log 2π
2

=
log 2π

2
(%(n) − 1) −

1
2

∑
d ||n

Λ(d),

where the last sum is logκ(n).

For squarefree n (22) reduces to (20).

5.7. Identities Involving Cyclotomic Polynomials
Let Φn(x) (n ∈N) stand for the cyclotomic polynomials (see, e.g., [9, Ch. 13]) defined by

Φn(x) =

n∏
k=1

gcd(k,n)=1

(
x − exp(2πik/n)

)
.

Consider now the following analogue of the cyclotomic polynomials Φn(x):

Φ[reg]n(x) =
∏

k∈Regn

(
x − exp(2πik/n)

)
.
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The application of Proposition 3.1 gives the following result.

Proposition 5.7.1 For every n ∈N,

Φ[reg]n(x) =
∏
d ||n

Φd(x).

Here the degree of Φ[reg]n(x) is %(n). If n is squarefree, then Φ[reg]n(x) = xn
− 1 and for example,

Φ[reg]12(x) = Φ1(x)Φ3(x)Φ4(x)Φ12(x) = x9
− x6 + x3

− 1.
It is well known that for every n ∈N, n ≥ 2,

U(n) :=
n∏

k=1
gcd(k,n)=1

sin
(

kπ
n

)
=

Φn(1)
2φ(n)

, (23)

where

Φn(1) =

p, n = p ν, ν ≥ 1,
1, otherwise, i.e., if ω(n) ≥ 2,

and for n ≥ 3,

V(n) :=
n∏

k=1
gcd(k,n)=1

cos
(

kπ
n

)
=

Φn(−1)
(−4)φ(n)/2

, (24)

where

Φn(−1) =


2, n = 2 ν,
p, n = 2p ν, p > 2 prime, ν ≥ 1,
1, otherwise.

For every n ∈ N,
∏

k∈Regn
sin(kπ/n) = 0, since n ∈ Regn. This suggests to consider also the modified

products

U[regmod](n) :=
n−1∏
k=1

k regular (mod n)

sin
(

kπ
n

)
,

V[regmod](n) :=
n−1∏
k=1

k regular (mod n)

cos
(

kπ
n

)
.

We show that U[regmod](n) is nonzero for every n ≥ 2. More precisely, define the modified polynomials

Φ[regmod]n(x) = (x − 1)−1 Φ[reg]n(x) =
∏
d ||n
d>1

Φd(x).

Here, for example, Φ[regmod]12(x) = Φ3(x)Φ4(x)Φ12(x) = x8 + x7 + x6 + x2 + x + 1. All of the polynomials
Φ[regmod]n(x) have symmetric coefficients. By arguments similar to those leading to the formulas (23) and
(24) we obtain the following identities.
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Proposition 5.7.2 For every n ∈N, n ≥ 2,

U[regmod](n) =
Φ[regmod]n(1)

2%(n)−1
=

κ(n)
2%(n)−1

,

and for every n ∈N, n ≥ 3 odd,

V[regmod](n) =
Φ[regmod]n(−1)

(−4)(%(n)−1)/2
= (−1/4)(%(n)−1)/2 .

Note that %(n) is odd for every n ∈N odd.

6. Maximal Orders of Certain Functions

Let σ(n) be the sum of divisors of n and letψ(n) = n
∏

p|n(1+1/p) be the Dedekind function. The following
open problems were formulated in [2]: What are the maximal orders of the functions %(n)σ(n) and %(n)ψ(n)?

The answer is the following:

Proposition 6.1.

lim sup
n→∞

%(n)σ(n)
n2 log log n

= lim sup
n→∞

%(n)ψ(n)
n2 log log n

=
6
π2 eγ,

where γ is the Euler-Mascheroni constant.

Proof. Apply the following general result, see [25, Cor. 1]: If f is a nonnegative real-valued multiplicative
arithmetic function such that for each prime p,

i) ρ(p) := supν≥0 f (pν) ≤ (1 − 1/p)−1, and
ii) there is an exponent ep = po(1)

∈N satisfying f (pep ) ≥ 1 + 1/p,
then

lim sup
n→∞

f (n)
log log n

= eγ
∏

p

(
1 −

1
p

)
ρ(p).

Take f (n) = %(n)σ(n)/n2. Here f (p) = 1 + 1/p and f (pν) = 1 + 1/pν + 1/pν+2 + 1/pν+3 + . . .+ 1/p2ν < 1 + 1/p
for every prime p and every ν ≥ 2. This shows that ρ(p) = 1 + 1/p and obtain that

lim sup
n→∞

f (n)
log log n

= eγ
∏

p

(
1 −

1
p2

)
=

6
π2 eγ.

The proof is similar for the function 1(n) = %(n)ψ(n)/n2. In fact, 1(p) = f (p) = 1 + 1/p and 1(pν) ≤ f (pν)
for every prime p and every ν ≥ 2, therefore the result for 1(n) follows from the previous one.

Remark 6.2. Let σs(n) =
∑

d |n ds. Then for every real s > 1,

lim sup
n→∞

%s(n)σs(n)
n2s =

ζ(s)
ζ(2s)

.

This follows by observing that for fs(n) = %s(n)σs(n)/n2s, fs(p) = 1 + 1/ps and fs(pν) = 1 + 1/psν + 1/ps(ν+2) +
1/ps(ν+3) + . . . + 1/p2sν < 1 + 1/ps for every prime p and every ν ≥ 2. Hence, for every n ∈N,

fs(n) ≤
∏
p |n

(
1 +

1
ps

)
<

∏
p

(
1 +

1
ps

)
=
ζ(s)
ζ(2s)

,

and the lim sup is attained for n = nk =
∏

1≤ j≤k p j with k→∞, where p j is the j-th prime.



B. Apostol, L. Tóth / Filomat 29:4 (2015), 687–701 701

References

[1] O. Alkam, E. A. Osba, On the regular elements in Zn, Turkish J. Math. 32 (2008) 31–39.
[2] B. Apostol, Extremal orders of some functions connected to regular integers modulo n, An. Ştiinţ. Univ. ”Ovidius” Constanţa,
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